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1 Introduction18

In an interesting paper, Fey (2008) studies the problem of the existence of a19

pure-strategy Nash equilibrium in the symmetric two-player lottery contest20

with uniformly distributed, privately known marginal costs.1 Fey (2008)21

conjectures that there is precisely one pure-strategy Nash equilibrium in this22

Bayesian game. In a subsequent article, Ryvkin (2010) examines a more23

general class of symmetric contests with independently distributed private24

costs, allowing for a wider class of contest success functions, for more general25

probability densities functions, and for more than two players. However, as26

Ryvkin (2010) notes, the �xed-point techniques used by Fey (2008) and by27

himself do not allow one to address the issue of equilibrium uniqueness.28

In response to this research question, the present paper develops an ap-29

proach to equilibrium uniqueness in contests that is both simple and general.230

In fact, our arguments apply to many of the imperfectly discriminating con-31

tests of incomplete information that have been studied in the literature.332

In particular, it is shown that the equilibria considered in Fey (2008) and33

Ryvkin (2010) are unique.34

Our approach rests upon Rosen�s (1965) uniqueness argument for con-35

cave N -person games with strategy spaces that are convex subsets of some36

Euclidean space. Rosen (1965) considers the Jacobian matrix J associated37

1For a formal description of the lottery contest, see Section 4. For an introduction to
the theory of contests, see Corchon (2007).

2By equilibrium uniqueness, we mean here the existence of at most one pure-strategy
Nash equilibrium. The issue of the existence of at least one pure-strategy Nash equilibrium
is not examined in the present paper.

3An overview of the literature on contests with incomplete information will be given at
the end of this section.
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Figure 1: Illustration of Rosen�s (1965) argument.

with players�marginal payo¤ functions, and requires J + JT , i.e., the sum38

of J and its transpose, to be negative de�nite at all strategy pro�les. To39

obtain some intuition, consider the pseudogradient associated with the pay-40

o¤ functions in an asymmetric two-player lottery contest. I.e., to each pair41

of bids (x1; x2) 2 R2+nf(0; 0)g, one attaches a vector whose i�s component42

corresponds to player i�s marginal payo¤, for i = 1; 2. Figure 1 shows the43

corresponding directional �eld, in which the length of the pseudogradient at44

each point is normalized to one.4 At the unique interior equilibrium ��, the45

pseudogradient vanishes. Suppose there was another interior equilibrium ���46

that di¤ers from ��. Then the scalar product between the pseudogradient47

and the vector pointing from ��� to �� would have to vanish at both �� and48

4In the example drawn, the value of the prize is v = 1, and marginal costs are c1 = 0:6
for player 1, and c2 = 0:4 for player 2.
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���. But under Rosen�s (1965) condition on the Jacobian, this scalar product49

turns out to be strictly declining as one moves along the straight line from50

��� to ��, which is impossible. The argument works, in fact, equally well for51

boundary equilibria. Hence, there is at most one equilibrium.52

An extension of Rosen�s theorem to Bayesian games is obtained by Ui53

(2004). Imposing Rosen�s condition on the Jacobian in each state of the54

world, Ui (2004) shows that the Bayesian Nash equilibrium is essentially55

unique, in the sense that any two pure-strategy equilibria in which players56

maximize ex-ante expected payo¤s must induce identical bid pro�les in al-57

most all states of the world. Ui (2004) applies his result to Bayesian potential58

games and team decision problems. However, as will be shown below, Ui�s59

(2004) methods can be extended also to the case of contests.60

Our analysis makes progress in �ve main dimensions. Firstly, it is noted61

that the condition on the Jacobian need not be imposed on the entire space62

of strategy pro�les, but only on a strict subset thereof. This observation is63

important because, even with complete information, contests may not satisfy64

Rosen�s condition at all strategy pro�les.5 Secondly, we identify a condition65

on how valuations may depend on the state of the world and on the play-66

ers�private information without invalidating the general approach. Thirdly,67

5For illustration, consider a lottery contest between three players with common valua-
tion v = 1, and constant marginal costs. In this example,

J + JT =

0B@ � 4(x2+x3)
(x1+x2+x3)3

� 2x3
(x1+x2+x3)3

� 2x2
(x1+x2+x3)3

� 2x3
(x1+x2+x3)3

� 4(x1+x3)
(x1+x2+x3)3

� 2x1
(x1+x2+x3)3

� 2x2
(x1+x2+x3)3

� 2x1
(x1+x2+x3)3

� 4(x1+x2)
(x1+x2+x3)3

1CA (1)

for a bid vector x = (x1; x2; x3)
T 2 R3+nf(0; 0; 0)g. One notes that the matrix on the

right-hand side of (1) is not negative de�nite for all x. For example, zT (J + JT )z = 0 for
z = x = (0; 0; 1)T . Hence, Rosen�s condition does not hold in this example.
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it is noted that the condition on the Jacobian may be replaced, using an68

argument due to Goodman (1980), by a set of more convenient conditions69

on the contest success function and the cost functions. Fourthly, we show70

that a discontinuity of the contest success function at the origin need not71

interfere with the uniqueness argument. This observation is particularly use-72

ful because some of the most popular contests, including the lottery contest,73

are discontinuous at the origin. Finally, we �nd a simple condition on the74

information structure under which a given pure-strategy Nash equilibrium is75

indeed unique (rather than essentially unique). In fact, that condition even76

seems to be crucial for uniqueness in the case of discontinuous contests.77

Literature on contests with incomplete information. While the problem of78

equilibrium uniqueness in contests is well-understood in the case of complete79

information,6 the existing literature o¤ers only partial results for the case80

of incomplete information. Hurley and Shogren (1998a) consider a model81

with one-sided asymmetric information and private valuations. Assuming82

that the informed player is never discouraged from competing in the con-83

test, they �nd a unique equilibrium. More generally, Hurley and Shogren84

(1998b) show that there is at most one interior equilibrium in any two-player85

lottery contest with private valuations and with two types for one player86

and three for the other, where types may be correlated. However, the in-87

dex approach employed in that paper does not provide information about88

the possibility of boundary equilibria, in which some types would remain89

inactive (i.e., bid zero). Malueg and Yates (2004), Münster (2009), and Sui90

6See, in particular, Pérez-Castrillo and Verdier (1992), Szidarovszky and Okuguchi
(1997), Nti (1999), Cornes and Hartley (2005), and Yamazaki (2008, 2009).
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(2009) study the unique equilibrium in a symmetric two-player lottery con-91

test in which each player may have one of two valuations, and types may be92

correlated. Schoonbeek and Winkel (2006) characterize the unique equilib-93

rium in an N -player contest with potential inactivity, where one player has94

private information about her valuation and all other players are identical.95

Wärneryd (2003, 2010) and Rentschler (2009) �nd a unique equilibrium in96

common-value contests between players each of which is either privately in-97

formed or completely uninformed. As mentioned above, the papers by Fey98

(2008) and Ryvkin (2010) allow for continuous and independent distributions99

of marginal costs, yet do not establish uniqueness. Based on a contraction100

argument, Wasser (2013a) �nds a su¢ cient condition for uniqueness for the101

modi�ed lottery contest with heterogeneous continuous distributions of mar-102

ginal costs. Wasser (2013b) even allows for interdependent valuations and103

general continuous contest success functions, yet does not discuss uniqueness.104

Overall, however, as this overview shows, there is a lack of general results on105

equilibrium uniqueness.7106

The rest of the paper is structured as follows. Section 2 contains prelim-107

inaries. Contests with continuous payo¤ functions are considered in Section108

3. Section 4 deals with contests whose payo¤ functions are discontinuous at109

the origin. Section 5 concludes. An Appendix contains technical proofs and110

lemmas.111

7Asymmetric information and uncertainty may take many forms in contests. For exam-
ple, Lagerlöf (2007), Lim and Matros (2009), Münster (2006), and Myerson and Wärneryd
(2006) examine the implications of introducing uncertainty about the number of players,
whereas Baik and Shogren (1995), Bolle (1996), and Clark (1997) allow for incomplete
information about a bias in the contest success function.
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2 Preliminaries112

This section introduces the basic set-up and our assumption on the informa-113

tion structure.114

2.1 Set-up115

We consider an N -player contest with incomplete information, where N � 2.116

All uncertainty is summarized in a state of the world !, which is drawn117

ex ante from a compact Polish state space 
 according to some probability118

distribution � on the Borel sets of 
. Each player i = 1; :::; N observes the119

realization of a signal or type �i = yi(!), where yi is a continuous mapping120

from 
 to some compact Polish space �i. Signals are private information to121

the respective contestant, i.e., player i = 1; :::; N does not observe the signal122

�j of any other player j 6= i. We write �i for the probability distribution on123

�i induced by � via yi, for i = 1; :::; N .124

Based on the private signal �i received, each player i = 1; :::; N forms a125

posterior belief or conditional distribution �i;�i on the Borel sets of 
,
8 and126

subsequently submits a bid xi � 0, which may of course depend on the signal.127

For any pro�le of bids, x�i = (x1; :::; xi�1; xi+1; :::; xN) 2 RN�1+ , player i�s128

payo¤ in state ! 2 
 is given by �i(xi; x�i; !) � pi(xi; x�i; !)vi(!)�ci(xi; !),129

where pi : R+�RN�1+ �
! [0; 1] is player i�s state-dependent contest success130

function, vi : 
 ! R+ is player i�s valuation function, and ci : R+ � 
 ! R131

is player i�s cost function.132

We require that p0(x; !) � 1�
PN

i=1 pi(xi; x�i; !) � 0, for any x 2 RN+ and133

8Since 
 is Polish, posteriors exist. For details, see Kallenberg (1997, Ch. 5).
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any ! 2 
. Further assumptions on the contest technology will be imposed134

in Sections 3 and 4.135

Our assumptions on the cost functions are as follows.136

Convex costs (CC). For any i = 1; :::; N and any ! 2 
, the function137

ci(�; !) is twice di¤erentiable with @ci=@xi > 0 and @2ci=@x2i � 0. Moreover,138

@ci=@xi and @2ci=@x2i are continuous over R+ � 
, for any i = 1; :::; N .139

Note that a player�s cost function may depend on the state of the world,140

rather than only on the player�s signal. Thus, costs expected at the time of141

bidding need not coincide with ex-post cost realizations.142

The following assumption will be imposed on players�valuation functions.143

Multiplicatively separable valuations (MS). There is a continuous144

function v : 
! R++ and, for each player i = 1; :::; N , a continuous function145

�i : �i ! R++ such that vi(!) = v(!) � �i(yi(!)) for any ! 2 
.146

This assumption is �exible enough to encompass the possibility of stan-147

dard settings with private or common valuations of the contest prize. More148

speci�cally, in a private-value setting, v � 1, while in a pure common-value149

setting, �i � 1 for i = 1; :::; N . Additional settings are possible. For exam-150

ple, when the model captures an international con�ict about the exclusive151

access to an oil �eld located under the Northern polar cap, then v(!) might152

correspond to the size of that oil �eld, and �i(yi(!)) to a country-speci�c153

valuation parameter.154

Let xmaxi : �i ! R+ be a measurable mapping that assigns a maximum155

bid to each type �i 2 �i, for each i = 1; :::; N . Note that xmaxi (�i) may156
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be zero, in which case type �i is forced to remain inactive. We will assume157

throughout that the function xmaxi is bounded, i.e., that there is a �nite158

x > 0 such that xmaxi (�i) � x for any i = 1; :::; N and any �i 2 �i. By159

a bid function for player i, we mean a measurable mapping �i : �i ! R+160

such that �i(�i) 2 [0; xmaxi (�i)]. Denote by Bi the set of all bid functions161

for player i. For a pro�le of bid functions ��i = f�jgj 6=i 2 B�i �
Q
j 6=iBj,162

denote by ��i(y�i(!)) = f�j(yj(!))gj 6=i 2 RN�1+ the corresponding pro�le of163

bids resulting in state ! 2 
. Using this notation, expected payo¤s for type164

�i 2 �i are given by �i(xi; ��i; �i) � E[�i(xi; ��i(y�i(!)); !)jyi(!) = �i],165

where E[�jyi(!) = �i] is the conditional expectation. A pure-strategy Nash166

equilibrium is then a pro�le of bid functions �� = f��i gNi=1 2 B �
QN
i=1Bi,167

such that �i(�
�
i (�i); �

�
�i; �i) � �i(xi; ���i; �i) for any i = 1; :::; N , any �i 2 �i,168

and any xi 2 [0; xmaxi (�i)].169

2.2 Information structure170

The following assumption will be imposed on the information structure of171

the contest.172

Absolute continuity (AC). For any two players i 6= j, any �j 2 �j,173

and any �i-null set Ni � �i, the set y�1i (Ni) is �j;�j -null.174

Intuitively, this assumption says that any set of signal realizations for175

some player i with prior probability zero has also a zero posterior probability176

for any player j 6= i conditional on player j having observed any signal177

�j 2 �j. The following lemma validates condition (AC) for a number of178

informational settings that have been used in the literature.179
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Lemma 2.1 Assumption (AC) holds in any of the following informational180

settings:181

(i) For any i = 1; :::; N , the signal space �i is �nite and any signal realiza-182

tion �i 2 �i has a positive probability.183

(ii) There is a player i0 2 f1; :::; Ng such that �j is a singleton for any184

j 6= i0.185

(iii) There is a compact non-degenerate interval 
0 in some Euclidean space9186

such that 
 = 
0��1� :::��N ; for any i = 1; :::; N , the signal space187

�i is a compact non-degenerate interval in some Euclidean space; for188

any i = 1; :::; N , the mapping yi is the canonical projection from 
189

to �i; the probability distribution � allows a positive density f with190

respect to the Lebesgue measure on 
.191

Proof. See the Appendix. �192

Lemma 2.1 covers, in particular, the cases of �nite type distributions193

with or without correlation (Hurley and Shogren (1998a, 1998b), Malueg and194

Yates (2004), Schoonbeek and Winkel (2006)), continuous type distributions195

in which one player is informed about a common value and all others are196

completely uninformed (Wärneryd (2003), Rentschler (2009)), continuous197

type distributions with independence (Fey (2008), Ryvkin (2010), Wasser198

(2013a)), and continuous type distributions with interdependent valuations199

(Wasser (2013b)). The lemma also covers information structures such as the200

9I.e., 
0 = [a1; b1] � ::: � [am; bm] for reals a1 < b1; :::; am < bm, where m � 1 is the
dimension of the Euclidean space.
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mineral rights model that have been used in the literature on auctions, but201

less so in the literature on contests.202

3 The uniqueness theorem203

Our assumption of �strict concavity�on the contest technology will depend,204

to some extent, on the domain S � RN+ of bid pro�les over which the contest205

success function is continuous, and also on the domain S�i � RN�1+ of bid pro-206

�les for the opponents of every player i over which the contest success function207

is both strictly increasing and strictly concave in the own bid. Initially, we208

consider contest success functions that are continuous everywhere and both209

strictly increasing and strictly concave in the own bid regardless of the op-210

ponents�bid pro�le. Therefore, in this section, S � RN+ and S�i � RN�1+ for211

all i = 1; :::; N .212

Strictly concave technology (SC). (i) For any i = 1; :::; N and any213

! 2 
, the function pi(�; �; !) is twice di¤erentiable on R+�S�i with @pi=@xi >214

0 and @2pi=@x2i < 0. Moreover, @pi=@xi and @p
2
i =@xi@xj are continuous on215

R+ � S�i � 
, for any i; j = 1; :::; N . (ii) For any i = 1; :::; N , any xi � 0,216

and any ! 2 
, the function pi(xi; �; !) is convex over S�i. (iii) The mapping217

p0(�; !) is convex over S, for any ! 2 
.218

In the continuous case, our uniqueness argument is summarized in the219

following result.220

Theorem 3.1 Impose (CC), (MS), (AC), and (SC). Then the N-player221

contest with incomplete information allows at most one pure-strategy Nash222
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equilibrium.223

Proof. By (MS), one may divide each player i�s payo¤ function by224

�i(yi(!)) > 0 without changing the optimal bid of any �i 2 �i, and without225

a¤ecting the validity of (CC). Hence, w.l.o.g., vi � v for all i = 1; :::; N .226

Suppose there are two equilibria �� = (��1; :::; �
�
N) and �

�� = (���1 ; :::; �
��
N )227

with �� 6= ���. Write �s = s�� + (1� s)��� for s 2 [0; 1]. Note that �1 = ��228

and �0 = ���. By part (i) of Lemma A.1 in the Appendix, one may de�ne,229

for any s 2 [0; 1], the �scalar product�230


s �
NX
i=1

E�i [�i(s; �i)(�
�
i (�i)� ���i (�i))] , (2)231

where E�i [�] denotes the expectation with respect to �i, and �i(s; �i) �232

@�i(�
s
i (�i); �

s
�i; �i)=@xi. For s = 0 and s = 1, the necessary Kuhn-Tucker233

conditions at the equilibrium �s imply �si (�i) = 0 if �i(s; �i) < 0 and234

�si (�i) = xmaxi (�i) if �i(s; �i) > 0, for any i = 1; :::; N and any �i 2 �i.235

It follows that 
0 � 0 and 
1 � 0. Plugging (14) into (2), the law of total236

expectation yields237


s = E

"
NX
i=1

�i(s; !)zi(!)

#
(3)238

for any s 2 [0; 1], where �i(s; !) � @�i(�
s
i (yi(!)); �

s
�i(y�i(!)); !)=@xi and239

zi(!) � ��i (yi(!)) � ���i (yi(!)). We wish to show that 
1 � 
0 < 0. Con-240

sider some player i 2 f1; :::; Ng and some state ! 2 
. Since �i(�; !) is241

continuously di¤erentiable over the unit interval, the fundamental theorem242
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of calculus implies243

�i(1; !)� �i(0; !) =

Z 1

0

@�i(s; !)

@s
ds. (4)244

Moreover,245

@�i(s; !)

@s
zi = v

NX
j=1

@2pi
@xj@xi

zizj �
@2ci
@x2i|{z}

�0 by (CC)

z2i , (5)246

where the arguments have been dropped on the right-hand side. Combining247

(3), (4) and (5), one arrives at248


1 � 
0 � E

�Z 1

0

v(!)z(!)TJp(�
s(y(!)); !)z(!)ds

�
, (6)249

where z(!) = (z1(!); :::; zN(!))
T , and Jp(x; !) is the N � N matrix whose250

elements are @2pi(xi; x�i; !)=@xi@xj. By part (i) of Lemma A.2, Jp(x; !) +251

Jp(x; !)
T is negative de�nite for any x 2 RN+ and any ! 2 
. Therefore,252

z(!)TJp(x; !)z(!) =
1
2
z(!)T (Jp(x; !) + Jp(x; !)

T )z(!) < 0 for any x 2 RN+253

and for any ! 2 
 with z(!) 6= 0. However, by part (i) of Lemma A.3, there254

is a player i 2 f1; :::; Ng and a set P � 
 of positive �-measure such that255

zi(!) = ��i (yi(!)) � ���i (yi(!)) 6= 0 for any ! 2 P. Hence, inequality (6)256

implies 
1 � 
0 < 0, which is inconsistent with 
0 � 0 and 
1 � 0. The257

contradiction shows that there cannot be two distinct equilibria. �258

In particular, Theorem 3.1 o¤ers conditions for uniqueness in a setting259

with interdependent valuations, as considered by Wasser (2013b).260
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4 Discontinuous contests261

In the popular rent-seeking game of Tullock (1980), the contest success func-262

tion for player i = 1; :::; N is state-independent, and given by263

pi(xi; x�i; !) =

8><>:
xRi

xRi +
P
j 6=i x

R
j
if (xi; x�i) 6= 0,10

1
N

if (xi; x�i) = 0,
(7)264

for some R > 0. A special case that has found particular attention in the265

literature is the lottery contest, where R = 1. Note that, as the contest suc-266

cess function (7) is discontinuous at the origin, Theorem 3.1 applies neither267

to the rent-seeking game in general nor to the lottery contest in particular.268

To nevertheless cover such cases, (SC) will be replaced in this section by a269

somewhat weaker condition:270

Strictly concave technology (fSC). Properties (i) through (iii) of con-271

dition (SC) hold with S � RN+nf0g and S�i � RN�1+ nf0g for all i = 1; :::; N .272

Moreover, two new conditions will be added:273

Well-behaved singularity (WS).There is an " > 0 such that pi(xi; 0; !) >274

pi(0; 0; !) + " for any i = 1; :::; N , any xi > 0, and any ! 2 
. Moreover,275

pi(�; 0; !) is constant over R++, for any i = 1; :::; N and any ! 2 
.276

No minuscule budgets (NM). There is a � > 0 such that, for any277

i = 1; :::; N and any �i 2 �i, either xmaxi (�i) = 0 or xmaxi (�i) � �.278

10For convenience, we will henceforth use 0 to denote the origin in Euclidean space,
regardless of the dimension.
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Condition (WS) concerns a player�s probability of winning against a pro-279

�le consisting exclusively of zero bids. The condition says that, in this case,280

marginally raising a zero bid enhances the chances of winning in a discontin-281

uous way, and that raising a positive bid does not increase the probability282

of winning any further. Assumption (NM) says that �nancial constraints283

should either exclude a type from the contest altogether or allow a minimum284

�exibility in bidding.285

Clearly, the properties collected in conditions (fSC) and (WS) are moti-286

vated by the example of the lottery contest. Indeed, it is straightforward to287

verify the following result.288

Lemma 4.1 Conditions (fSC ) and (WS) hold for the lottery contest.289

Proof. See the Appendix. �290

This lemma is more useful than it might appear at �rst glance. For291

example, in the rent-seeking game with R < 1, one may apply Lemma 4.1 to292

a modi�ed contest in which each bidder i submits a transformed bid �i = xRi .293

Similar arguments can be made in the more general case of logit contests294

(see, e.g., Ryvkin, 2010).295

We arrive at the main uniqueness result for contests with payo¤ functions296

that are discontinuous at the origin.297

Theorem 4.2 The conclusion of Theorem 3.1 continues to hold when298

assumption (SC) is replaced by ( fSC), (WS), and (NM).299

The proof is similar to that of Theorem 3.1, yet taking account of the300

two complications that, �rstly, expected marginal pro�ts for an inactive type301
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may be unbounded o¤ the equilibrium and, secondly, Rosen�s condition on302

the Jacobian need not hold globally.303

Proof. Suppose that there are two equilibria �� and ��� with �� 6= ���,304

and de�ne �s as before. Then, by part (ii) of Lemma A.1, for s = 0 and305

s = 1, the mapping306

e'i(s; �) : �i 7!
8><>: �i(s; �i)(�

�
i (�i)� ���i (�i)) if xmaxi (�i) > 0

0 if xmaxi (�i) = 0
(8)307

is integrable over �i. Hence, one may de�ne the modi�ed �scalar product�308

e
s � NX
i=1

E�i [e'i(s; �i)] , (9)309

where e
0 � 0 and e
1 � 0, as in the proof of Theorem 3.1. Combining (8),310

(9), and (14) leads to311

e
s = E

"
NX
i=1

e i(s; !)
#

(10)312

for s = 0 and s = 1, where313

e i(s; !) �
8><>: �i(s; !)zi(!) if xmaxi (yi(!)) > 0

0 if xmaxi (yi(!)) = 0.
(11)314

By part (iii) of Lemma A.4, it holds for �-a.e. ! 2 
 that, if xmaxi (yi(!)) > 0,315

then the function �i(�; !) is continuously di¤erentiable over the unit interval.316

If, however, xmaxi (yi(!)) = 0, then zi(!) = 0. Therefore, as in the proof of317
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Theorem 3.1,318

e
1 � e
0 � E

�Z 1

0

v(!)z(!)TJp(�
s(y(!)); !)z(!)ds

�
. (12)319

It su¢ ces to show that the right-hand side of (12) is negative. But by part (ii)320

of Lemma A.3, there are players i 6= j and a set P � 
 of positive �-measure321

such that zi(!) 6= 0 and zj(!) 6= 0 for all ! 2 P. Let s 2 (0; 1). Since zi(!) 6=322

0 implies �si (yi(!)) > 0, and analogously, zj(!) 6= 0 implies �sj(yj(!)) > 0, the323

vector x = �s(y(!)) � (�s1(y1(!)); :::; �
s
N(yN(!))) has two or more nonzero324

entries. Hence, by part (ii) of Lemma A.2, Jp(x; !) + Jp(x; !)
T is negative325

de�nite. Therefore, z(!)TJp(�
s(y(!)); !)z(!) < 0 for any ! 2 P. Since326

s 2 (0; 1) was arbitrary, the right-hand side of (12) is indeed negative. �327

It will be noted that Theorem 4.2 implies, in particular, that the equilibria328

studied by Fey (2008) and Ryvkin (2010) are unique. It also follows that329

there is at most one equilibrium in Hurley and Shogren�s (1998b) setting330

with �nitely many types for each player, even when allowing for equilibria331

with inactive types.332

5 Concluding remarks333

This paper has derived simple conditions for the existence of at most one334

pure-strategy Nash equilibrium in contests with incomplete information. While,335

in our view, it makes much sense to conjecture that one-shot contests with336

strictly concave technologies and convex costs should not cause coordination337

problems even under asymmetric information, the ultimate generality of the338
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uniqueness result was still somewhat unexpected to us.339

The �ndings of this paper should be desirable for several reasons. For340

example, in symmetric Bayesian contests, there is often a focus on symmet-341

ric equilibria (e.g., Myerson and Wärneryd, 2006). Given that equilibrium342

uniqueness in a symmetric game trivially implies the symmetry of the unique343

equilibrium, the present analysis o¤ers a rationale for this approach. Fur-344

ther, uniqueness is a prerequisite for global stability (with respect to any345

dynamics for which Nash equilibria are stationary points). Finally, unique-346

ness may simplify comparative statics, revenue comparisons, and numerical347

analyses. E.g., Brookins and Ryvkin (2013) compare data obtained through348

laboratory experiments with numerical predictions that are derived under349

the hypothesis of uniqueness.350

However, open questions remain. To start with, the approach developed351

in the present paper might extend to contests with multi-dimensional e¤orts352

and multiple prizes. We have not explored this possibility. Secondly, our353

results clearly do not apply when the contest technology is not strictly con-354

cave. Thirdly, there are settings in which condition (AC) is not satis�ed,355

but the equilibrium is still unique. For example, this is the case for the356

common-value set-up in Wärneryd (2012), where two or more players are357

perfectly informed, while all others are completely uninformed. Finally, in358

Rosen�s (1965) original framework, the unique equilibrium is globally stable359

and e¤ectively computable. Exploring this �nal point might be particularly360

interesting.361
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Appendix362

This appendix contains the proofs of Lemmas 2.1 and 4.1, as well as some363

technical lemmas.364

Proof of Lemma 2.1. Fix i 6= j, �j 2 �j, and let Ni � �i be �i-null,365

i.e., �i(Ni) � �(y�1i (Ni)) = 0.366

(i) Since any �i 2 �i has a positive �i-probability, necessarily Ni = ?.367

Hence, y�1i (Ni) = ? is �j;�j -null.368

(ii) Assume �rst that �i is a singleton. Then, either y�1i (Ni) = ? or369

y�1i (Ni) = 
. But the latter case is impossible because �(y�1i (Ni)) = 0.370

Hence, y�1i (Ni) = ? is �j;�j -null. Assume next that �i is not a singleton.371

Then, i = i0, and �j is a singleton. Hence, player j�s posterior equals the372

common prior, i.e., �j;�j = � for the sole signal realization �j in �j. Thus,373

�j;�j(y
�1
i (Ni)) = �(y�1i (Ni)) = 0.374

(iii) By assumption, � is equivalent to the Lebesgue measure � on 
,375

hence y�1i (Ni) is �-null. Since yi is the canonical projection, y�1i (Ni) =376


0 ��1 � :::��i�1 �Ni��i+1 � :::��N is a cylinder set, hence �i(Ni) =377

�(y�1i (Ni)) = 0, where �i the Lebesgue measure on �i. Moreover, since f is378

positive, Bayes�rule yields379

�j;�j(y
�1
i (Ni)) =

R
INi(�i)f(!0; �j; ��j)d��jR

f(!0; �j; ��j)d��j
, (13)380

where ��j denotes the Lebesgue measure on 
0���j, and INi : �i ! f0; 1g381

is the indicator function associated with the set Ni. But the numerator in382

(13) vanishes. Hence, y�1i (Ni) is �j;�j -null. �383
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Proof of Lemma 4.1. We check the properties of (fSC) �rst. Let384

x�i 2 S�i. Then, X�i �
P

j 6=i xj 6= 0. Hence, @
@xi

xi
xi+X�i

> 0 and @2

@x2i

xi
xi+X�i

=385

� 2X�i
(xi+X�i)3

< 0. Moreover, the �rst and second partial derivatives of pi are386

obviously continuous over R+ � S�i � 
. This proves property (i). As for387

property (ii), one notes that for any �xed xi � 0, the mapping X�i 7! xi
xi+X�i

388

is convex over R++, and that the mapping x�i 7! X�i is linear. Property (iii)389

is immediate because p0 � 0 in the lottery contest. As for (WS), it su¢ ces390

to note that pi(0; 0; !) = 1
N
< 1, while pi(xi; 0; !) = 1 for any xi > 0. �391

The technical lemmas below are employed in the proofs of the uniqueness392

results, Theorems 3.1 and 4.2. The �rst lemma deals with the di¤erentiability393

of expected payo¤s and with integrability properties of the derivative.394

Lemma A.1 (i) Impose (CC) and (SC). Then, for any s 2 [0; 1] and395

any �i 2 �i, the derivative �i(s; �i) � @�i(�
s
i (�i); �

s
�i; �i)=@xi is well-de�ned396

and �nite, with397

�i(s; �i) = E [�i(s; !)j yi(!) = �i] , (14)398

where �i(s; !) � @�i(�
s
i (yi(!)); �

s
�i(y�i(!)); !)=@xi. Moreover, the mapping399

'i(s; �) : �i 7! �i(s; �i)(�
�
i (�i) � ���i (�i)) is integrable over �i. (ii) Impose400

(CC), ( fSC), (WS), and (NM). Then, for s = 0 and s = 1, and for any401

�i 2 �i with xmaxi (�i) > 0, the derivative �i(s; �i) is well-de�ned and �nite,402

with (14) holding true, where �i(s; !) is well-de�ned and �nite for �i;�i-a.e.403

! 2 
. Moreover, the mapping e'i(s; �) de�ned in the proof of Theorem 4.2404

is integrable over �i.405

Proof. (i) From (CC) and (SC), @�i=@xi is continuous, hence bounded406
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on the compact set [0; x] � [0; x]N�1 � 
. Therefore, by Billingsley (1995,407

Th. 16.8), �i(s; �i) is well-de�ned, and equation (14) holds. Clearly, �i(s; �i)408

is bounded over �i. Since �
�
i (�i) � ���i (�i) is likewise bounded, 'i(s; �) is409

integrable over �i.410

(ii) Assume �rst that �si (�i) > 0. Then, for some compact neighborhood411

K � R++ of �si (�i), the derivative @�i=@xi is continuous onK�[0; x]N�1�
.412

Hence, �i(s; �i) is well-de�ned and �nite, with (14) holding true, as in part413

(i) of this lemma. Assume next that �si (�i) = 0. Then, by part (ii) of Lemma414

A.4, the event �s�i(y�i(!)) = 0 is �i;�i-null. Let ! 2 
 with �
s
�i(y�i(!)) 6= 0.415

Then, by (fSC), �i(�; �s�i(y�i(!)); !) is concave, and di¤erentiable at �si (�i) =416

0. Hence, the di¤erence quotient417

�s(xi; !) �
�i(xi; �

s
�i(y�i(!)); !)� �i(0; �s�i(y�i(!)); !)

xi
(15)418

is monotone increasing as xi # 0, with limxi#0�
s(xi; !) = �i(s; !). More-419

over, since marginal costs are bounded, there is a constant c > 0 such that420

�s(x; !) � �c for all ! 2 
. By Beppo Levi�s theorem, (14) holds. More-421

over, from xmaxi (�i) > 0 and the equilibrium condition for s = 0 and s = 1,422

necessarily �i(s; �i) � 0, so that �i(s; �i) is also �nite. To prove that e'i(s; �)423

is integrable over �i, one notes that �c � �i(s; �i) � 0 when �si (�i) = 0. Sim-424

ilarly, by (NM), there is a constant p > 0 such that 0 � �i(s; �i) � p when-425

ever �si (�i) = xmaxi (�i) � �. Finally, by the �rst-order condition, �i(s; �i) = 0426

when �si (�i) 2 (0; xmaxi (�i)). Thus, �i(s; �) is indeed bounded over the domain427

where xmaxi (�i) > 0. �428

The next lemma is a straightforward variant of Goodman�s (1980) Lemma.429
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Lemma A.2 (Goodman, 1980) (i) Under (SC), Jp(x; !) + Jp(x; !)
T

430

is negative de�nite for any x 2 RN+ and any ! 2 
. (ii) The conclusion of431

part (i) remains true if (SC) is replaced by ( fSC) and x is required to possess432

two or more nonzero entries.433

Proof. (i) Let H�, H��, and Mk, with k = 1; :::; N , be the N � N434

matrices whose respective elements are h�ij =
PN

k=1
@2pk(xk;x�k;!)

@xi@xj
= �@2p0(x;!)

@xi@xj
,435

h��ij =
@2pi(xi;x�i;!)

@x2i
for i = j and h��ij = 0 otherwise, and m

k
ij =

@2pk(xk;x�k;!)
@xi@xj

436

for k 6= i; j and mk
ij = 0 otherwise. Then H� is negative semide�nite, H��

437

is negative de�nite, and each Mk is positive semide�nite. Hence, Jp(x; !) +438

Jp(x; !)
T = H�+H���

PN
k=1M

k is negative de�nite. (ii) If x 2 RN+ has two439

or more nonzero entries, then x�i 6= 0 for all i = 1; :::; N , so that the proof440

proceeds as before. �441

The following lemma says that when the assumption of absolute continu-442

ity holds and expected payo¤s are strictly concave w.r.t. the own bid, then443

any two distinct equilibria must di¤er in a �substantial�way.444

Lemma A.3 (i) Impose (CC), (AC), and (SC). Suppose there are two445

equilibria �� and ��� with �� 6= ���. Then there exist two players i 6= j446

and a set P � 
 of positive �-measure such that ��i (yi(!)) 6= ���i (yi(!)) and447

��j(yj(!)) 6= ���j (yj(!)) for all ! 2 P. (ii) The conclusion of part (i) remains448

true if (SC) is replaced by (fSC) and (WS).449

Proof. (i) By contradiction. Write Nj = f�j 2 �jj��j(�j) 6= ���j (�j)g,450

and suppose that there exists some player i 2 f1; :::; Ng such that y�1j (Nj)451

is �-null for any j 6= i. Fix some �i 2 �i for the moment. Then, by452
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(AC), y�1j (Nj) is �i;�i-null for any j 6= i. Hence, also
[
j 6=i

y�1j (Nj) = f! 2453


j���i(yj(!)) 6= ����i(yj(!))g is �i;�i-null. Thus, �i(�; �
�
�i; �i) = �i(�; ����i; �i).454

By (CC) and (SC), �i(�; ���i; �i) is an integral over strictly concave functions,455

hence strictly concave. Hence, from the equilibrium condition, ��i (�i) =456

���i (�i). Since �i 2 �i was arbitrary, ��i = ���i . Repeating the argument with457

i replaced by any j 6= i shows that, in fact, �� = ���.458

(ii) By part (i) of Lemma A.4, ���i(y�i(!)) 6= 0 is never a �i;�i-null event.459

Hence, �i(�; ���i; �i) is strictly concave, and the proof proceeds as before. �460

The �nal lemma is used in the proofs of Lemmas A.1 and A.3, and also461

in the proof of Theorem 4.2.462

Lemma A.4 Impose (CC), (fSC), and (WS), and let i 2 f1; :::; Ng. (i)463

For any �i 2 �i with xmaxi (�i) > 0, the event ���i(y�i(!)) 6= 0 is not �i;�i-464

null. (ii) For any �i 2 �i with xmaxi (�i) > 0 and ��i (�i) = 0, the event465

���i(y�i(!)) = 0 is �i;�i-null. (iii) There is a �-null set Ni � 
 such that466

for any ! 2 
nNi with zi(!) 6= 0, we have (�si (yi(!)); �s�i(y�i(!))) 6= 0 for467

any s 2 [0; 1].468

Proof. (i) By contradiction. Suppose that the event ���i(y�i(!)) 6= 0469

is �i;�i-null. Then, �i(�; �
�
�i; �i) is strictly decreasing over R++ by (WS) and470

(CC). However, from xmaxi (�i) > 0 and (WS), xi = 0 cannot be a maximizer471

of �i(�; ���i; �i). Therefore, �� cannot be an equilibrium.472

(ii) Suppose that the event ���i(y�i(!)) = 0 is not �i;�i-null. Then473

�i(�; ���i; �i) jumps up at xi = 0 by (CC), (fSC) and (WS). Moreover, xmaxi (�i) >474

0. Hence, ��i (�i) > 0.475
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(iii) For s 2 [0; 1], write476

N s
i = f! 2 
jxmaxi (yi(!)) > 0 and (�

s
i (yi(!)); �

s
�i(y�i(!))) = 0g: (16)477

By the law of total probability, �(N 0
i ) = E�i [�i;�i(N 0

i )]. But by part (ii) of478

this lemma, N 0
i is �i;�i-null for any �i 2 �i with xmaxi (�i) > 0. Hence, N 0

i is479

�-null. By analogy, �(N 1
i ) = 0. But N s

i = Ni � N 0
i \N 1

i for any s 2 (0; 1),480

which proves the assertion. �481
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